

DPP - 2 (EMI)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/79

https://youtu.be/nqpCc1WWmpk

Q 1. A straight wire of length L is bent into a semicircle. It is moved in a uniform magnetic field with speed V with diameter perpendicular to the field. The induced emf between the ends of the wire is
(a) BLV
(b) 2 BLV
(c) $2 \pi \mathrm{BLV}$
(d) $\frac{2 B L V}{\pi}$

Q 2. A straight copper wire of length 2 m is perpendicular to a uniform magnetic field of induction 0.7T. It is moved at right angles toits length and magnetic field at a speed of $2 \mathrm{~m} / \mathrm{s}$. Find the induced emf between the ends of the wire
(a) 2 V
(b) 2.8 V
(c) 1 V
(d) 1.4 V

Q 3. A straight copper wire of length 2 m is perpendicular to a uniform magnetic field of induction 0.7T. It is moved at right angles to its length and magnetic field at a speed of $2 \mathrm{~m} / \mathrm{s}$. If the ends of wire are joined by completing a circuit through a 4 -ohm resistor (stationary), at what rate must the work be done to keep the wire moving at the constant speed of $2 \mathrm{~m} / \mathrm{s}$?
(a) 1.56 W
(b) 3.12 W
(c) 0.49 W
(d) 1.96 W

Q 4. A 10 meter wire kept in east-west falling with velocity $5 \mathrm{~m} / \mathrm{sec}$ perpendicular to the field $0.3 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$. The induced e.m.f. across the terminal will be
(a) 0.15 V
(b) 1.5 mV
(c) 1.5 V
(d) 15.0 V

Q 5. Two rails of a railway track insulated from each other and the ground are connected to a milli voltmeter. What is the reading of voltmeter, when a train travels with a speed of $180 \mathrm{~km} / \mathrm{hr}$ along the track. Given that the vertical component of earth's magnetic field is $0.2 \times 10^{-4} \mathrm{~Wb} / \mathrm{m}^{2}$ and the rails are separated by 1 metre
(a) 10^{-2} Volt
(b) 10^{-4} Volt

(c) 10^{-3} Volt
(d) 1 Volt

Q 6. A thin wire of length 2 m is perpendicular to the $\mathrm{x}-\mathrm{y}$ plane. It is moved with velocity $\vec{V}=(2 \hat{\imath}+3 \hat{\jmath}+\hat{k}) \mathrm{m} / \mathrm{s}$ through a region of magnetic induction $\vec{B}=(\hat{\imath}+2 \hat{\jmath}) \mathrm{Wb} / \mathrm{m}^{2}$. Then potential difference induced between the ends of the wire is
(a) 2 V
(b) 4 V
(c) 0 V
(d) none of these

Q 7. A copper disc of radius 0.1 m is rotated about its centre with 10 revolutions per second in a uniform magnetic field of 0.1 Tesla with its plane perpendicular to the field. The e.m.f. induced across the radius of disc is
(a) $\frac{\pi}{10} \mathrm{~V}$
(b) $\frac{2 \pi}{10} \mathrm{~V}$
(c) $\pi \times 10^{-2} \mathrm{~V}$
(d) $2 \pi \times 10^{-2} \mathrm{~V}$

Q 8. A conducting square loop of side L and resistance R moves in its plane with a uniform velocity v perpendicular to one of its sides. A magnetic induction B constant in time and space, pointing perpendicular and into the plane of the loop exists everywhere. The current induced in the loop is

(a) $\frac{B L y}{R}$ clockwise
(b) $\frac{\times}{R}$ anticlockwise
(c) $\frac{2 B L V}{R}$ anticlockwise
(d) zero

Q 9. The current carrying wire and the rod AB are in same plane. The rod moves parallel to the wire with a velocity v. Which on of the following statement is true about induced emf in the rod?

(a) End A will be at lower potential with respect to B
(b) A and B will be at the same potential
(c) There will be no induced e.m.f. in the rod
(d) Potential at A will be higher than that at B

Q 10. A conducting rod PQ of length $l=2 \mathrm{~m}$ is moving at a speed of $2 \mathrm{~m} / \mathrm{s}$ making an angle of 30° with its length. A uniform magnetic field $\mathrm{B}=2 \mathrm{~T}$ exists in a direction perpendicular to the plane of motin. Then

(a) $V_{P}-V_{Q}=8 V$
(b) $V_{P}-V_{Q}=4 V$
(c) $V_{Q}-V_{P}=8 V$
(d) $V_{Q}-V_{P}=4 V$

Q 11. A rod of length 20 cm is rotating with angular speed of 100 rps in a magnetic field of strength 0.5 T about its one end. What is the potential difference between two ends of the rod
(a) 2.28 V
(b) 4.28 V
(c) 6.28 V
(d) 2.5 V

Q 12. A conducting rod AC of length $4 l$ is rotated about point O in a uniform magnetic field \vec{B} directed into the plane of the paper. $\mathrm{AO}=l$ and $\mathrm{OG}=3 l$. Find $V_{A}-V_{C}$
(a) $4 \mathrm{~B} \omega l^{2}$
(b) $\frac{1}{4} B \omega l^{2}$
(c) zero
(d) $2 B \omega l^{2}$

Answer Key

Q. 1	d	Q. 2	b	Q. 3	d	Q. 4	b
Q. 5	c						
Q. 6	a	Q. 7	c	Q. 8	d	Q. 9	d
Q. 11	c 10	b					

